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The problem of the dynamics of elliptical-vortex solutions of the rotating shallow- 
water equations is solved in Lagrangian coordinates using methods of Hamiltonian 
mechanics. All such solutions are shown to be quasi-periodic by reducing the problem 
to quadratures in terms of physically meaningful variables. All of the relative 
equilibria - including the well-known rodon solution - are shown to be orbitally 
Lyapunov stable to perturbations in the class of elliptical-vortex solutions. 

1. Introduction 
Goldsbrough (1930) observed that the shallow-water equations in a rotating frame 

admit exact elliptical-vortex solutions, whose velocity components are linear and 
whose height function is quadratic in the Eulerian coordinates, with coefficients 
depending on time. These lens-shaped solutions - with uniform vorticity, elliptically 
shaped flowlines, and parabolic height profiles - are the analogues for the rotating 
shallow-water (RSW) equations of the Kirchhoff (1876) vortex for the two- 
dimensional Euler equations (in which the velocity components are linear in the 
coordinates and the pressure is quadratic). Inclusion of the height function for the 
RSW elliptic-vortex solutions introduces an additional degree of freedom beyond 
that of the Kirchhoff vortex, leading to slightly richer dynamics. 

The 12-dimensional system of nonlinear coupled ordinary differential equations for 
elliptical-vortex RSW dynamics have been investigated by various authors, leading 
to a sequence of increasingly more complete solutions with applications to tidal 
oscillations, warm-core rings, and other upper-ocean phenomena. Ball (1963) uses the 
integral properties of the RSW equations to decouple the centre-of-mass motion and 
an axisymmetric pulsation from the rest of the elliptical-vortex motion, thereby 
reducing the problem to an eight-dimensional dynamical system. Using this system, 
Ball (1965) and Thacker (1981) investigate tidal oscillations in elliptical basins whose 
depth profile is parabolic. Oscillations and rotations of warm-core rings are studied 
by Cushman-Roisin, Heil & Nof (1985) and Cushman-Roisin (1987), who find a 
periodically pulsating axisymmetric solution and a steadily rotating elliptical 
solution of the eight-dimensional-vortex system. The latter is a uniformly rotating 
ellipse of constant shape (i.e. eccentricity) and size (i.e. area), which has been called 
the ‘rodon’. Ripa (1987) studies Lyapunov stability of the ‘circular rodon’ (i.e. a 
circular, uniformly rotating RSW vortex) finding them stable to disturbances in the 
class of elliptic solutions and unstable to higher-order polynomial disturbances. 

Young (1986) uses the theorems of Ball (1963) and the invariants of the RSW 
equations to reduce the eighth-order elliptical-vortex dynamics to quadratures, 

t With an Appendix by D. David and T. K. Ohsumi. 
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thereby proving that the elliptic-vortex solution is in general quasi-periodic, not 
chaotic. The analysis in the Eulerian description is tortuous, however, involving 
several substitutions and transformations of variables, and resulting in quadratures 
from which the full solution is complicated to  reconstruct. Rogers & Ames (1989) 
discuss Ball’s theorems on the motion of the centre of mass and on the oscillation of 
the moment of inertia using the framework of invariance group analysis for the 
shallow-water equations. In that framework they show that the particular solutions 
obtained by Thacker (1981) are group-invariant solutions. Rogers (1989) derives 
additional group-invariant vortex solutions. The elliptical-vortex solutions are also 
studied numerically in Kirwan & Liu (1991). 

These authors all work in Eulerian coordinates, while we work in the Lagrangian 
description. The Lagrangian description has a familiar particle-dynamics character 
and admits a canonical (symplectic) Hamiltonian formulation. (The Hamiltonian 
structure of the RSW equations in Eulerian coordinates is LiePoisson, see Holm & 
Long (1989) and references therein.) We show that elliptical-vortex motion reduces 
in the Lagrangian description to  one-degree-of-freedom classical Hamiltonian mech- 
anics, which may be investigated fully. The constants of motion are analogous to the 
usual angular momentum conservation law implied by rotational symmetry, and the 
dynamics of the reduced system is periodic. Hence, the dynamics of the full system 
is quasi-periodic, and hardly more complex than harmonic motion superposed upon 
precession. 

An early use of Lagrangian coordinates to derive exact solutions of Euler’s 
equations describing fluid flow with linear velocity profiles in three dimensions 
appears in Greenhill (1879), for circulation of a fluid of constant density within an 
ellipsoidal cavity. Even before Greenhill, fluid flows with linear profiles had been 
studied in Lagrangian coordinates by Dirichlet (1860), Dedekind (1860), and 
Riemann (1860), in connection with ellipsoidal figures of equilibrium for self- 
gravitating incompressible fluid masses. The history and development of the latter 
topic is given with extensive references by Chandrasekhar (1969). Rotating 
ellipsoidal-vortex solutions for incompressible fluids with linear velocity profiles are 
also treated in the classical texts by Basset (1880) and Lamb (1932). Lagrangian 
techniques for studying ellipsoidal-vortex solutions with linear velocity profiles are 
used in Dyson (1968) for ideal compressible fluids, in Holm (1982, 1983) for ideal 
compressible magnetohydrodynamics, and in Holm (1986) for stratified Boussinesq 
fluids. In  each of these cases, the dynamics turns out to be analogous to gyroscopic 
motion. 

The plan of the present paper is as follows. Section 2 discusses the RSW equations 
and the elliptical-vortex solution Ansatz in both Eulerian and Lagrangian 
coordinates. Section 3 gives the action principle and Hamiltonian formulation of 
elliptical-vortex dynamics in the Lagrangian description, as well as the constants of 
motion implied by the continuous symmetries of the Hamiltonian. A discrete 
symmetry under interchange of Eulerian and Lagrangian coordinates is also 
identified. This discrete symmetry implies a principle of duality, first formulated 
explicitly by Dedekind (1860) in discussing the dynamics of an incompressible fluid 
ellipsoid held together by gravitation. Applying the Dedekind duality principle to 
elliptical-vortex solutions of the RSW equations interchanges the angular mo- 
mentum of the elliptical-vortex with its (integrated) potential vorticity ; thereby 
relating, for example, uniformly rotating solutions having no potential vorticity to 
their dual solutions having potential vorticity but no angular momentum. Section 4 
uses the method of Hamiltonian reduction and Ball’s (1963) theorem on the simple 
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harmonic oscillations of the moment of inertia for RSW solutions to reduce the 
elliptical-vortex problem to Newtonian single-particle dynamics for the aspect ratio 
of the ellipse, solvable by quadrature in the usual way from a first integral. The 
known solutions of axisymmetric pulsation, uniform steady rotation (the rodon), and 
a combined motion of steady rotation and periodic pulsation (the so-called 
pulsrodon), as well as their dual solutions, are all recovered as simple special cases of 
the complete solution. 

2. The shallow-water equations in a rotating frame 

repeated indices and using subscript-comma notation for spatial derivatives) 
The shallow-water equations in a rotating planar domain are (summing on 

- = ( u + f ) e 6 j w ~ - ( ~ 2 + g h ) , i ,  i,j = 1,2,  at 

= - (hv",i. 
ah - 
at 

Here the constants f and g denote the Coriolis parameter and reduced gravity, 
respectively. The other notation is 

(2.3) 

The horizontal velocity components, vi, i = 1,2, and the height function h of the fluid 
depend on the two Eulerian spatial dimensions ( x l ,  x2)  plus time, t : 

v, = (v,(x,, 2 2 ,  t ) ,  V Z ( X 1 ,  x2, t ) ) ,  h = h(x*, x2, t ) .  (2.4) 

Goldsbrough's ( 1930) elliptical-vortex solution Ansatz for these equations is that 
the fluid velocity u is linear in the Eulerian coordinates x = ( x l ,  x 2 )  in the plane, and 
the surface height (or depth) h is quadratic in these coordinates. That is, 

u(x , t )  = A ( t ) . x ,  h ( x , t )  = ho( t ) -XT*B( t ) .x ,  (2.5) 

where A ( t )  and B(t) are 2 x 2 matrices depending only on time, and B is symmetric 
and positive definite. The units of A and B are inverse time and inverse length, 
respectively. The solution Ansatz (2.5) represents a swirling, rotating fluid mass in 
the shape of a horizontally truncated ellipsoid. Its upper boundary is the flat, 
horizontal ellipse at  h = 0. Substitution of this Ansatz into the shallow-water 
equations leads to a closed system of eight ordinary differential equations for ho(t), 
A(t) ,  and B( t ) ,  which have been rather extensively studied as discussed in the 
introduction. Here we seek to simplify these ordinary differential equations by first 
recasting the problem as a canonical Hamiltonian system in different, Lagrangian, 
variables. In these variables, two of the four degrees of freedom fall into action-angle 
pairs. These action-anglc pairs for the elliptical vortex are : first, angular momentum 
and its canonically conjugate angle, the orientation of the ellipse in an Eulerian 
reference frame ; and, second, potential vorticity and its canonically conjugate angle, 
the orientation of the ellipse relative to a Lagrangian reference frame. The remaining 
degrees of freedom are the lengths, a( t )  and b( t ) ,  of the two axes of the ellipse a t  h = 0. 
Ball's (1963) theorem on the simple harmonic oscillations of the moment of inertia, 
a2 + b2,  for RSW solutions suggests a transformation to plane polar coordinates given 
by the mean radius r( t )  = (a2+b2)i  and the shape parameter a(t) = tan-'(bla). It 
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turns out this transformation decouples the dynamics for the last two degrees of 
freedom r ( t )  and a(t) ,  thereby reducing the problem to quadrature. The key step, 
however, is the introduction of Lagrangian particle paths. 

We choose Lagrangian coordinates which are related to the initial particle 
positions x, by rescaling and re-aligning to the principle axes (l/a,, l/b,)  of B(O), the 
initial value of the symmetric matrix B(t) in (2.5). Being symmetric, the matrix 
B(0) can be diagonalized by a 2 x 2 rotation matrix R,, i.e. B(0) = R;' D,R,, with 
Do = diag ( l / a o ,  l /bo).  Choosing Lagrangian coordinates I = Db R, x, (with dimen- 
sions of [length];) then gives the principal axis expression xr B(0) x, = xr R;' Do R, x, 
= I T I ,  which is convenient in transforming the Goldsbrough Ansatz to Lagrangian 
coordinates. 

In  terms of Lagrangian coordinates la ,  a = 1,2 ,  the elliptical-vortex solution 
Ansatz may now be expressed as a particle-path relation, 

z'(Z, t )  = G;(t) la ,  with i ,  a = 1,2 ,  (2.6) 

where G(t) (also with dimensions of [length];) is a time-dependent 2 x 2 real matrix 
with positive determinant. The matrix G(t) represents the time-dependent map 
describing the motion of a fluid particle from the rescaled and re-aligned reference 
position, I ,  to the current position x. It follows that 

We also incorporate mass conservation, expressed in 

(2.7) 

the Lagrangian description as 

h(Z, t )  det (3 - = h(Z, 0) (a,  b,);. (2.8) 

Substitution into (2.5) yields the following relations for the elliptical vortex 

(2.9) I x = G(t) I ,  u = GG-'(t) X, 

h(Z, t )  = [h,(O) -PI] (a, b,)i/det G(t) 
= [h,(t) - ITGT(t) B(t) G(t) I]. 

Hence, the Goldsbrough elliptical-vortex variables in (2.5) may be expressed in terms 
of G(t), as 

GPT(t) G-'(t) (a,b,)i 
det G(t) 

B(t) = 
(2.10) 

A(t) = GG-'(t). I 
Thus, eight Eulerian quantities (one in h,, four in A,  and three in symmetric B )  

have been replaced by eight Lagrangian quantities (four in G and four in G). 
Substituting (2.9) into the shallow-water equations (2.1) gives the matrix equation 
for G(t) ,  

* c G - ~  
G-f&G = - with c = 2g(a,b,);, E = 

det G ' 
(2.11) 

with initial values G(0)  = (D!R,)-' (so that det G(0) = (a, b,);) and G(0)  = A(0) G(0). 
Since (2.11) is scale-invariant under G + h G  and c+h4c,  the magnitudes of all 
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the initial values can be adsorbed into the parameter c, which also contains the 
reduced gravity. This simply reflects the scale-symmetry of the original RSW 
equations. (Typical values of the parameters in (2.11) for oceanographic applications 
are (Young 1986) : f x s-l, g x 1 cm s-’, c x 4 x lo5 cm2 s-,.) The eighth-order 
dynamical system (2.11) will be the subject of the remainder of our investigation. 

3. Action principle and Hamiltonian formulation 

following Lagrangian : 
The dynamical equation (2.11) for G(t) arises from an action principle using the 

C 
L = iTr(GTG)-fTr(GT&G)-- 

det G ’ 

Thus, the momentum canonically conjugate to G is 

and the Hamiltonian H(II ,  G) is found by Legendre transformation to be 

C 
H = $Tr [ ( n + f ~ G ) ~  (II+f&G)] +- 

det G a 

The motion equation (2.11) then reappears in canonical Hamiltonian form as 

(3.3) 

The Lagrangian L in (3.1) in invariant under two rotational symmetries, 

G +  G’ = 0, GO,, (3.5) 

where 0, and 0, are 2 x 2 orthogonal matrices (rotations of the plane). From the 
relation x’ : = 0, x = (0, GO,) (Oi l  I )  = : G’l‘, one sees that symmetry under G + G’ 
means invariance under rotations of the Eulerian coordinates (q, z,) by O,, as well 
as invariance under rotations of the Lagrangian coordinates (1,’ 1 2 )  by Oil. 
Corresponding to these two symmetries of the Lagrangian, Noether’s theorem 
implies two constants of motion, namely, 

&Pe = IIGT-GIIT = GGT-GGT-f&Tr (GTG), 

&F’+ = IITG-GTII = GTG-GTG+2f&(detG), 

(3.6) 

(3.7) 

from 0, (right invariance). Physically, Pe is the angular momentum coming from 
invariance under rotations of Eulerian reference coordinates, and P+ is the potential 
vorticity (integrated over the ellipse) coming from invariance under rotations of the 
Lagrangian coordinate axes (relabelling of fluid particles). Both Po and P+ may be 
verified to be constants directly from the equation of motion for G. 

The Lagrangian (3.1) is also invariant under the discrete symmetry G- GT, which 
reverses the roles and senses of Eulerian and Lagrangian rotations, and interchanges 
the angular momentum and the potential vorticity, Pe++ P+. This discrete symmetry 
is the Dedekind duality principle for elliptical-vortex solutions of the RSW 
equations. This duality principle exchanges, for example, an elliptical-vortex 

from 0, (left invariance) and 
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solution which is uniformly rotating for its dual solution whose boundary is fixed, yet 
contains swirling flow. For self-gravitating figures of equilibrium the Dedekind 
duality principle interchanges Jacobi and Dedekind ellipsoids. (See Chandrasekhar 
1969 for further discussion of Dedekind duality in the context of self-gravitating 
figures of equilibrium.) This reversal of the roles and senses of Eulerian and 
Lagrangian rotations corresponds to reversing spaced-fixed, and body-fixed 
coordinates in the dynamics of a rigid body. 

4. Hamiltonian reduction and solution by quadrature 

Po and P4 by expressing G (via the polar decomposition) as 

where R, and R, are 2 x 2 rotation matrices and D is diagonal. That is, 

To reduce the system to its essential elements, we isolate the angles conjugate to 

G = R, DR,, (4 .1)  

(4 .2)  

The matrix R,(8) describes the orientation of the boundary of the ellipse relative to 
a fixed Eulerian reference frame, and R,($) describes the orientation of a line of fluid 
particles, swirling inside the ellipse, relative to a Lagrangian reference frame aligned 
with the principal axes of the symmetric matrix B(0). The diagonal matrix D 
describes the (strictly positive) lengths of its two axes, thereby determining the shape 
and area of the elliptical vortex. (Interchanging a and b corresponds to an inessential 
reorientation of the ellipse by in.) The polar decomposition of G clearly shows the 
reversal of Eulerian and Lagrangian rotations under G t) GT. 

1. G = (  cose sinO)(a 0 ) (  cos$ sin$ 
-sin8 cose 0 b -sin$ COS$ 

Upon defining angular frequencies 

wl=-R;1Rl=-8~ and w,=-R,R;'=-$E, (4.3) 
we may express the previous conserved quantities as 

&Po = R,(2Dw,D-D2~,-w1 D2) R;'-f(TrD2)& = [2ab4-(a2+b2)  ( f -8 ) ]~ ,  
(4 .4a)  

&P4 = R,(D2w,+w, D2-2Dwl D) Ri1-2f(det D ) E  = [ (a2+b2)d-22ab(f-e)]&.  
(4 .4b)  

Here we have used [R,,E] = 0 = [R,,E]. These constants of motion demonstrate the 
coupling in the elliptical-vortex flows among rotation, swirl and deformation. Note 
that pS*P4 under ( f -e ) *d ,  reflecting the Dedekind duality in the angular 
variables explicitly. 

Substituting the polar decomposition G = R, DR, into the Lagrangian (3.1) gives 

L = ~ 2 + ~ ~ 2 + ~ ( a 2 + b 2 ) ~ 2 + ~ ( a 2 + b 2 ) ~ 2 + 2 a b ~ ~ - f ( a 2 + b 2 ) ~ - 2 f u b ~ - ~ .  (4 .5)  

As a check, notice that the Lagrangian is independent of the angles 8 and q5, leading 
to conservation of their canonical momenta, 

ab 

a2 + b2)  (f- e) ,  Po = = 2abd-(  

P - 7 = ( a 2 + b 2 ) ~ - 2 u b ( f - 8 ) .  

( 4 . 6 ~ )  

(4 .6b)  

8L 

- a$ 
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Not unexpectedly, this agrees with the earlier calculations in ( 4 . 4 ~ ’  b) .  

via the usual Legendre transformation. Namely, 
We now pass to the Hamiltonian description in the polar decomposition variables 

H = pa-L = p~+pi+?j(az+bz) ( 8 2 + 4 2 ) + 2 a b 8 d + 2 .  
ab (4 .7)  

Hence, we have (in a form reminiscent of Riemann’s 1860 formula (7 .2) )  

where Pa and Pb are momenta canonically conjugate to a and b,  respectively, and the 
quantities b and 4 have been evaluated by using expressions (4.6) for the constants 
of motion Po and PA, 

(4.9a.) 

(4.9b) 

Once the deformation dynamics is known for the elliptical axes a(t) and b(t), the 
angular evolution for O ( t ) ,  the Eulerian orientation of the elliptical boundary, and 
$ ( t ) ,  the Lagrangian orientation of a line of fluid particles within the ellipse, may be 
obtained from (4.9a, b )  by quadratures. 

Hamilton’s equations for the axes of the ellipse are given by 

where 

- +pb)2 + 
-p$)2 + & f 2(a2 + b2) + - C I 

- 
4 ( ~ + b ) ~  4 ( ~ - b ) ~  ab 

( 4 . 1 0 ~ )  

(4.10b) 

(4.11) 

Thus, the problem is reduced to nonlinear oscillations with two degrees of freedom 
(a( t )  and b ( t ) ,  the two axes of the ellipse) followed by the quadratures in (4.9a, b)  to 
reconstruct the full solution. 

To proceed farther, we transform Hamilton’s equations (4.10a, b )  from Cartesian 
to polar coordinates and take advantage of Ball’s (1963) theorem on the simple 
harmonic oscillations of the moment of inertia of all RSW flows, including the 
elliptical-vortex flows. In polar coordinates, 

one computes 

r = (a2+b2)i ,  a = rcosa, 

a = tan-’ (b la) ,  b = r sin a, I 
ab = r2 sin a cos a = +r2 sin 201, 

( a f b ) 2  = a2+b2+2ab = r2(1fsin2a), 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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Thus, the Hamiltonian in polar coordinates ( r ,  a )  becomes 

1 
H = f Po+$(P: + f 2r2) +,lK(a, Pa), 

K(a ,  Pa) = +P:+ V(a) ,  

(4.16) 

(4.17) where 

with 
2c +- 4( 1 +sin 201) 4( 1 -sin 201) sin 2a 

(po+p,)2 + (po-p,)2 V(a)  = (4.18) 

The first term in H in (4.16) generates a rotation in 0 a t  the inertial frequency f, 
taking the system into the rotating frame of the f-plane. The second term generates 
simple-harmonic radial oscillations at the inertial frequency. The last term (the piece 
involving the elliptical aspect ratio, tana) ,  is homogeneous in r of degree -2. This 
homogeneity allows an immediate separation between the dynamics of r and a,  as 
follows. Hamilton's equations imply 

Thus, since H and Po are constants in (4.19), the sum of the squares of the elliptical 
axes lengths (i.e. the moment of inertia) undergoes simple harmonic motion around 
its initial value with frequency 2f (i.e. a t  twice the inertial frequency). That is, 

r2(t) = ri + A  cos (2 f t)  + B  sin (2 f t)  (4.20) 

dr2 
dt 

where ri = ( H - f P o ) / f 2 ,  A = r'(O)-ri, B = -(0)/2f. 

The first integral of (4.19) for the dynamics of the sum of squares of the elliptical 
axes is related to  the Hamiltonian for the dynamics of the elliptical aspect ratio, a,  
by 

-4(H-fPo)r2+Zf2r4 

= 4r2[#',2 + f 'r') - ( H -  f PB)] 

= -a(& Pa). (4.21) 

Hence, K(a,  Pa) is a constant of motion and the last term in the Hamiltonian in (4.16) 
may be regarded as a generalized angular-momentum potential. The a-dynamics 
follows from Hamilton's equations, 

d a  aH 1 aK 
dt - r2(t)aPa' 
-- - (4.22) 

(4.23) 

Thus, the conserved quantity K(a,  Pa) may be interpreted as the Hamiltonian for 
the aspect-ratio dynamics of a in terms of a rescaled time, r ,  defined by d r  = dt/r2(t). 
In terms of r we have the canonical equations, 

(4.24) 
d a  aK dpa - aK 
dr aPa' dr  aa ' 

- -- - -- - - 
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a 

FIGURE 1. The aspect-ratio potential V(a)  for Po =l P$. In this case, the axisymmetric state, 
a = i x ,  is singular. 

or, in Newtonian form, 

leading in the usual way to a closed-form (implicit) solution for 7(a) in terms of 
elliptic integrals. Actually evaluating the elliptical integrals is unnecessary, though, 
because the dynamical behaviour of the aspect ratio for the elliptic-vortex solutions 
can be read off from the graphs of the potential V(a)  plotted in figure 1 and figure 2. 
As shown in figure 1 for Po + P4, a t  finite energy K ,  the quantity a oscillates in the 
scaled time variable, 7, and is confined within one of two physically equivalent 
sectors, either in (0, in) (i.e. a < b), or in (in.,&) (i.e. a > b).  The two sectors differ only 
by the exchange of a and b,  equivalent to a rotation in 0 by in. Yet for Po =I= P+, there 
is an 'angular-momentum barrier' in the potential V(a)  at a = in, which prevents 
one sector with a $; b being reached from the other one by passing through a = b, the 
axisymmetric state. Thus, for Po $; P4, the axisymmetric state is a singular point of 
the aspect-ratio potential and cannot be reached. (This is analogous to the exclusion 
of collision orbits leading to r = 0 in the Kepler problem for non-zero angular 
momentum. ) 

I n  each of the two sectors shown in figure 1 for Po =I= P+ the potential V(a)  has only 
one minimum, so a performs periodic oscillations in 7 around that minimum. Because 
r2(t) is positive, equilibria in the scaled time variable, 7, are also equilibria in normal 
time, t. These equilibria occur at the minima of V ( a )  for Pa = 0. For example, the 
rodon solution has Pa = 0 = P, and r2(t )  = r;, so it is an equilibrium in both a and r .  
Its rotation in the Eulerian frame, and its internal motion are determined from the 
quadrature formulae ( 4 . 9 ~ )  and (4.9b). The pulsrodon solution of Rogers (1989), 
rotates and pulses periodically with parameters P+ = 0, P, $; 0, P, + 0, and is simple- 
harmonic in r'((t) with Pe + 0. Note that the discrete symmetry (3.8) leads to  an 
additional solution, dual to the pulsrodon under Pet )  P+. This dual solution pulses 
and has internal motion (periodic swirling of Lagrangian particles such that all 
particles have the same period), and the Eulerian orientation of the axes of its 
(instantaneous) elliptical boundary is determined from its internal motion by the 
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0 % 
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II 

FIGURE 2. The aspect-ratio potential V ( a )  for PA + P#. In this case, the axisymmetric state, 
a = in, is regular and stable. 

quadrature (4.9). I n  general, solutions with Pe += P# and both P, and P, non-zero will 
swirl, pulse, and rotate quasi-periodically, leading to the beautiful Lissajous-type 
figures seen numerically in the Appendix to this paper by David & Ohsumi. All of 
these solutions are orbitally Lyapunov stable to perturbations in the space of 
elliptical-vortex solutions (i.e. they are Lyapunov stable to changes of initial 
conditions, modulo rotations by 8 and $). 

When P, = P, the singularity in V(a)  a t  a = an is absent, as shown in figure 2. In  
fact, for this special case V(a)  has a minimum a t  a = in, the axisymmetric case. So 
the axisymmetric solution exists when Po = P+, and nearby elliptical solutions will 
undergo oscillations through the axisymmetric state from one sector (say, a < b)  to 
the other (a  > b)  without hindrance. Thus, the axisymmetric solutions are stable (i.e. 
V(a)  has a minimum) in the class of elliptical-vortex solutions for perturbations that 
preserve the relation Po = P#. Perturbations that break the relation P, = P, lead to 
oscillating elliptical solutions which stay near the axisymmetric state but remain 
confined within the sector, (a  < b)  or (a  > b ) ,  in which they start initially. Thus, the 
axisymmetric solution is also orbitally Lyapunov stable to  perturbations in the class 
of elliptical-vortex solutions. 

5. Summary 
The present analysis uses methods from Hamiltonian mechanics to prove that the 

elliptical-vortex solutions are quasi-periodic and integrable. Of the eight dimensions 
in the solution, four are in action-angle pairs (6, P,; q5, P,), two are simple-harmonic 
( r2 ,  dr2/dt), and two are periodic Newtonian oscillations (a ,  Pa). The general motion 
is reconstructed by integrating the a equation in the rescaled time variable, 7, 
transforming to the normal time variable, t ,  using the r2 equation, then integrating 
out the remaining angle variables, 8 and q5. All steps of the reconstruction are 
quadratures and each variable a t  every step has a clear physical meaning. 

Remark on orbital stability and on chaotic behaviour. The analysis leading to (4.24) 
shows that the reduced system has only periodic solutions, with no bifurcations and 
no hyperbolic orbits. Thus, all equilibria - including the rodons - are orbitally stable 
(that is, stable modulo phase drifts in 8 and q5), in the class of elliptical-vortex 
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solutions. The full reconstructed solution is regular and quasiperiodic with at most 
four frequencies, and does not exhibit sensitive dependence on initial conditions 
(chaos). In particular, no chaos appears in the elliptical-vortex solutions themselves 
and one may expect only subharmonic resonance effects in the presence of damping 
and driving of the elliptical-vortex system, which might be used to mimic, say, 
interactions of elliptical vortices with external currents, or with additional layers. 

I would like to thank D. Kirwan and C. Rogers for stimulating my interest in this 
problem. Some of this work was done at  the University of Minnesota Institute for 
Mathematics and its Applications while I was a visitor there, and I am grateful for 
their hospitality. I would also like to thank D. David and T. Ohsumi, whose 
numerical work on this problem shown in the appendix convinced me the elliptical- 
vortex motion is not chaotic. Finally, I would like to thank J. Marsden, P. Ripa, and 
W. Young for their helpful comments. 

Appendix. Numerical study of elliptical vortices in shallow water 
B y  D. David' and T. K .  Ohsumi2 

Theoretical Division and Center for Nonlinear Studies, Los Alums National 
Laboratory 

Physics Department, University of Calgornia, Santa Cruz 
In this Appendix, we examine numerically the behaviour of solutions in the reduced 
two-degree-of-freedom system (4.10) in the body of the paper. These solutions are 
computed using the following representation. Take 

u = a+b, v = a-b, (A 1 )  

to be the sum and difference of the elliptical axes lengths. The dynamical system for 
u( t )  and v(t)  following from equation (4.10) is 

where PE = &P0+P,)2 and P," = +(P0-P+J2. In the numerical computations, we have 
chosen the values f = 0.5 for the frequency parameter and c = 0.1 for the reduced 
gravity parameter. Also, we have fixed the following initial conditions : 

s++=o,  e - + = i . o ,  P , = o ,  p,=o.i, u = 2 ,  v = i  (A 3) 

(where P, = d+d and P, = d--6) and we have varied the numerical values of the 
constants PE and P,". The solutions of ( A 2 )  live on manifolds embedded in R4 
(coordinated by the four variables u, v, P,, and P,). The body of the paper 
characterizes these manifolds as four-tori. Generically, the solutions form dense 
coverings of the tori. However they will be closed curves on the tori whenever all the 
ratios of the various periods are rational numbers; for this situation, we may think 
of the solutions as generalizations of the well-known Lissajous figures to closed orbits 
in higher dimensions. The orbits actually do reduce to genuine Lissajous patterns 
when the parameter c vanishes ; in that case, (A 2) uncouple to a set of two oscillators 
whose solutions for u2 and v2 undergo simple harmonic motion at frequency f. The 
pictures presented below (figures 3 4 )  are projections of the dynamics in R4 onto 
three-dimensional subspaces for c =+ 0; it  is therefore not surprising to see that the 
projections of the solutions are self-intersecting. 
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FIQURE 3. (v, P,,P,) projection of axisymmetric oscillations for Po = P+. ( a )  The viewpoint shows 
reflection symmetry in the (v,P,) plane; ( b )  as seen from another viewpoint. 

(4 (b) 

FIQURE 4. (a )  (u, v, P,) projection of elliptical vortex motion for Po = - P+. ( b )  (v, Pu, P,) 
projection of elliptical vortex motion for Po = - Pm. 

The first example is characterized by the choice P," = 0 and P: = 1.0. Now P, = 0 
implies that Po = P+. In this case, the physically relevant region of the u (aspect ratio) 
phase plane is the full sector (0, in) rather than the union of the disconnected angular 
intervals (0 , :~ )  and (in,$). Figure 3(a)  shows the projection of the solution in the 
(v,P,,P,) subspace viewed from above the (P,,v) plane; figure 3 ( b )  shows the same 
solution, using a different line of sight. In  figure 3 (a), we notice a mirror symmetry 
with respect to the variable v. This reflects the interchange symmetry for aspect 
ratios a l b  and bla of the ellipse (in other words, invariance under the interchange of 
the semi-major and semi-minor axes of the ellipse). 

Figures 4 (a) and 4 ( b )  depict solutions for the choice P," = 1 .O and PE = 0. Here, P, 
= 0 implies Po = -P+, which means that the rotating and swirling components of the 
dynamics proceed in opposite directions. The pulsing effect mentioned in the body of 
the paper is shown here ; the orbits undergo oscillations with amplitudes that increase 
and decrease alternately. Not unexpectedly, the mirror symmetry pointed out in the 
preceding paragraph also occurs for this case. Figure 4 (a) presents the solution in the 
(u, v, P,) subspace. This projection is transverse to  one of the toroidal components of 
the topology of the orbit ; so a hole appears in the picture. (Holes are observed for all 
numerically computed orbits ; however, they are obvious only in particular 
projections.) Figure 4 ( b )  shows the same solution, but projected in the (v, P,,P,) 
su bspace. 
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(4 (b) 

FIGURE 5.  (a) (v, P,,P,) projection of elliptical vortex motion for Po = 0 = P4. (b) Elliptical 
vortex motion for P8 = 0 = P+, plotting (u, v)  versus the potential V in (A 4). 

Figures 5 (a )  and 5 ( b )  exemplify a solution with P," = P: = 0. Figure 5 ( a )  shows the 
solution in the (v, P,, P,) subspace. Figure 5 ( b )  gives another representation of the 
solution, this time by plotting it on the potential surface V(u, v), given in (4.11) in the 
text, and in these variables, 

P: P," 4c 
V ( u , v )  = ,+-+ff2(u2+v2)+-. 

4u 4v2 u2v2 

That is, the solution is shown in the space ( u , v ,  V ) ;  where the orbit sweeps the 
potential surface in a regular way. This representation of the solution is analogous 
to a ball rolling under gravity on the surface V ( u ,  v) = constant. 

When both of the angular momenta P, and P, are non-zero, the motion involves 
slightly more complicated patterns than in the case when one of the angular 
momenta vanishes. This is shown in figure 6 ( a ) ,  which depicts the solution for the 
choice P, = 0.1 and P, = 0.2 in the space (v, P,, V ) ;  the behaviour for both F', and P, 
non-zero exhibits more complex patterns of sweeping (e.g. compare figures 5a and 
6c) .  Figures 6 ( b )  and 6(c)  show the same orbit in the (u,v,P,) subspace and the 
(v, P,, P,) subspace, respectively. 
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